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Abstract 

One of the fundamental problems in representing a curved surface is how to 

define an intrinsic, i.e., viewer independent, coordinate system over a curved 

object surface. In order to establish point matching between model and observed 

feature distributions over the standard coordinate system, we need to set up a 

coordinate system that maps a point on a curved surface to a point on a standard 

coordinate system. This mapping should be independent of the viewing direc- 

tion. Since the boundary of a 3-D object forms a closed surface, a coordinate sys- 

tem defined on the sphere is preferred. 

We have been exploring several intrinsic mappings from an object surface to a 

spherical surface. We have investigated several representations including: the 

EGI (Extended Gaussian Image), the DEGI (Distributed Extended Gaussian 

Image), the CEGI (Complex Extended Gaussian Image), and the SAI (Spherical 

Attribute Image). This paper summarizes our motivations to derive each repre- 

sentation and the lessons that we have learned through this endeavor 
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1. Introduction 

One of the fundamental problems in object recognition is how to represent the objects mod- 

els. The representation govern the characteristics and efficiencies of recognition systems. 

We restrict ourselves here to surface-based representations since those are the most relevant 

in computer vision. 

A surface-based representation describes an object as a collection of visible "faces" of the 

object. Since imaging systems provide the same information as surface-based representa- 

tions, it is relatively easy to use surface-based representation for object recognition. Repre- 

sentative surface-based representations include edge-and/or face-based invariants, aspect 

graphs, and spherical representations. 

The simplest type of object representation is based on planar faces. A planar face has a clear 

boundary of surface orientation discontinuity and its internal pixels provide less informa- 

tion. A polyhedron, consisting of planar faces, effectively represents the relations between 

faces for recognition. Early works by Oshima-Shirai [14] and Bolles [15] effectively use 

such graphs of visible face relations. 

One of the basic problems in using such visible graphs was determining the number of dif- 

ferent graphs required to represent one object. Koendering's aspect answers this question 

[16]. The aspect representation specifies an object as a collection of all possible topologi- 

cally different relational graphs of visible faces. Our earlier work on the vision algorithm 

compiler used this aspect representation for object recognition. 

For curved object recognition, the boundary of a curved surface patch is often ill-defined; 

the relative relationships between faces are unreliable. Fortunately, however, points on the 
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surface do carry useful information, such as curvature, for recognition. 

It is desirable to assign a coordinate system to curved surfaces and to use invariant features, 

including curvature distributions, along this particular coordinate system. This coordinate 

system should be independent of the viewing direction. Since it is difficult to reliably seg- 

ment a curved surface into regions, it is also desirable to define a coordinate system over the 

entire object surface. 

Aspherical representation maps an entire object surface to a standard coordinate system (a 

unit sphere). Objects usually handled by vision systems have closed surfaces: topologically 

equivalent to a spherical surface. Thus, we began our effort to develop a mapping method 

from an arbitrary object surface to a spherical surface and store invariants over the spherical 

surface. It is possible to define a coordinate system on a surface using two parameters such 

as longitude and latitude. Such parametrization, however, require specific information, that 

is, the direction of an imaginary line between North and South poles. 

This paper briefly overviews our earlier efforts on such spherical representations. We begin 

with a discussion of the Extended Gaussian Image developed around 1980, and, continue on 

to describe our recent work on the Spherical Attribute Image. 
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2. Gauss Mapping and Related Representations 

Gauss derived a mapping method that uses surface orientations to map points on an arbitrary 

curved surface onto points on the sphere [1]. Let us assume a surface patch/? on a curved 

surface. At that surface patch, we can define the surface normal N(p) uniquely (Figure 1). 

Regardless of the position of/?, we can translate the normal vector so that its origin coin- 

cides with the origin of the coordinate system. The end point of the unit normal lies on a unit 

sphere. The mapping that associates this point on the unit sphere with the patch is referred to 

as a Gauss map and the sphere is referred to as a Gaussian sphere. 

3 3 
Formally, \QX SczR be a surface with an orientation N. The map N\ S ^R takes its val- 

ues in the unit sphere S^ 

2 
The map N: S -^ S , thus, defined, is called the Gauss map of ;S' (See Figure 1.) 

Figure l:The Gauss Map 

2.1. Extended Gaussian Image (EGI) 

Let us assume that an object surface is evenly sampled into patches. At each surface patch, 

we can define a surface normal with a single unit of mass. Each surface normal is assumed 

to be able to vote the mass to the corresponding point on the Gaussian sphere. From the vot- 

ing by the all surface patches over the object surface, we can observe a distribution of mass 
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over the Gaussian sphere. This mass distribution depends on the shape of the object and is 

referred to as the Extended Gaussian Image (EGI) of the object. 

This mapping does not incorporate the original spatial relationship between surface patches. 

Thus, it seems that the original shape information is somehow reduced. However, 

Minkowski proved that, if two convex objects have the same EGIs, those objects are con- 

gruent [2]. Other important characteristics of EGI are [3]: 

• The EGI mass on the sphere is the inverse of Gaussian curvature on the obj ect sur- 

face, 

• The mass center of the EGI is at the origin of the sphere, 

• As an object rotates, its EGI also rotates in the exact same way. 

Using the Minkowski theorem, we can develop an object recognition system. From an 

object model, we sample its surface evenly, calculate surface normal, and obtain the model 

EGI. After obtaining the surface normal distribution of an observed object, we can repeat 

the same process to build an observed EGI. By examining which model EGI has a distribu- 

tion similar to the observed one, we can recognize the observed object; by examining which 

part of the EGI distribution corresponds to the observed partial EGI, we can determine from 

which direction we are observing it. Some of the earlier work on object recognition using 

EGI are found in [4, 5,6]. 

2.2. Distributed EGI 

The utility of the original EGI is strictly limited to convex objects. A non-convex object has 

more than two separated regions with the same surface orientations. Such areas, though 

physically separated (for example, regions A and B in Figure 2), will be mapped to the same 
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point on the Gaussian sphere. However, when an object is observed from a particular view- 

ing direction, some of the area (such as region A) is occluded when viewed from this direc- 

tion and does not contribute EGI mass on the Gaussian sphere. Thus, the observed EGI is not 

same as the corresponding part of the model EGI on the Gaussian sphere. 

• Viewing Direction 

C 

Model EGI 
■^ 

observed EGI 

Figure 2: EGI of an non-convex object 

In order to avoid this eflfect, we have derived a distributed EGI [7]. This method recalculates 

a partial EGI for each viewing direction. 

We can represent all possible viewing directions using a viewing sphere. Thus, we sample a 

viewing sphere into sampling viewing directions. At each sampling viewing direction, we 

recalculate EGI by considering the effect of self occlusion. Since this effect is accommodated 

in the model, we can determine the attitude of a non-convex object using this distributed 

EGI. 

view 1 

Tessellated viewing sphere 

Figure 3: Definition of Distributed EGI 
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2.3. Complex EGI 

2.3.1. Definition 

One of the problems with the EGI is that we can determine the rotation of an object but can- 

not determine the translation of the object. In order to recover translation, we have intro- 

duced the complex EGI to encode positional information. 

We will assume some arbitrary origin of an object. We will measure the distance, d, from 

this origin to each surface patch. We will store d at the corresponding point of the Gaussian 

sphere. The CEGI weight at each point on the Gaussian sphere is a complex number whose 

magnitude is the surface area and whose phase is the distance information. When an object 

translates, the magnitude of the complex mass remains the same while its phase changes 

accordingly. 

Object recognition is accomplished by EGI matching using the magnitude only. The transla- 

tion component is computed by using the phase difference. 

Formally, the complex weight associated with a surface patch is Ae , where^4 is the area of 

a patch with surface normal fl, the normal distance dto a jBxed origin (Figure 4). The dis- 

tance d is positive if the perpendicular vector from the origin to the patches is in the same 

direction as the outward facing normal of the patch. 

Surface normal 
Complex EGI mass: 

Patch area: A /^ '^  L—-^ ,-^ 
Gauss map        ' ^ •• ^ 

Normal distance: d 

Origin 

Figure 4: Complex EGI (CEGI) 
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For any given point in the CEGI corresponding to normal h, the magnitude of the point's 

weight is Ae . A is independent of the normal distance, and if the object is convex, the dis- 

tribution of y4 corresponds to the conventional EGI representation. If the object is not con- 

vex, the magnitude of each weight will not necessarily be equal to the weight in the 

corresponding conventional EGI. 

The translation invariant property of the weight magnitude applies even if there is more than 

one contiguous surface patches with the same normal. Consider the surface patches whose 

normal are h shown in Figure 5 (the distribution d., ■■■,d, is henceforth referred to as the 

surface normal distance distribution). 

Before translation, the corresponding complex weight isP =   \ A.e 
i= 1 

After a translation along a vector T, the complex weight becomes: 

k 

P- =   2 ^i' 
i = 1 

jdi 

j{d, + T.h)  ^J{T.h)p 

B 
d\ id! 

p,^^^Udl^Jc)^^^0d2Vc) 

dl     ic Ar'^Br'V = pj 

c = r.iv 

Figure 5: Translation effect on CEGI 
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Hence, for each point of the CEGI, the magnitude of the weight is independent of the trans- 

lation. The complex number wraps around for every translation distance of 2%. Therefore, 

the computed translation is known only up to 27t. To eliminate this ambiguity, all distances 

are normalized such that the greatest expected change in translation distance is %. 

2.3.2. Pose Determination Strategy 
Given a prototype CEGI and a partial CEGI of an unknown object, we can recognize the 

object and determine its orientation as follows: First, we calculate the magnitude distribu- 

tions of both CEGFs, and second, we match the resulting distribution with that of the proto- 

type. Once both the object and its orientation with respect to the stored model are identified, 

the object translation can be calculated by using the suitably oriented CEGI's. 

The translation parameters can be determined by applying a least-squares techniques as fol- 

lows: Suppose that the object has been translated by &c, by, and 8z in the x, y, and z, respec- 

tively. Then, the weight Ae    of a surface patch becomes Aei {d+M» h) ^f^g^ translation, 

where 5d' = hxi + Sy}' + 5z^ and h = n) + n) + nh. Then, for each matched weight P^ 

in the object CEGI corresponding to the weight P^ in the model CEGI, let 

(H. = arg 
fP\\ 

arg 
\^ 

hxn .^ + byn. + hzn. 

The translation is computed by minimizing: 

visible 
2 

e   =        E       («,-"/;cS^-"//>'-«,z52) 
/= 1 

where N^.^^^^^ is the total number of visible surface patches on the object. 

Figure 6 shows the localization results of a non-convex curved object using CEGI. 

Similar representations have been proposed by Nalwa [9]. He proposed that a surfaces be 

represented by their Gaussian images augmented by the support function. This support func- 
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Figure 6: Localization results using CEGL 

tion is the signed distance of the oriented tangent plane from a predefined origin. He pro- 

poses to ascribe to each different surface a separate support function value. This means that, 

in general, the proposed variant of the Gauss map of a surface is not globally one to one. 

Although it is less compact it can uniquely determine a surface. A method to determine 

object pose based on this representation was not presented in Nalwa's paper. 

Roach et al. [10] encode positional information by expressing the equation of a surface 

patch in dual space. The resulting encoded representation is called the spherical dual image. 

A point in the dual space represents both the orientation and position of a patch; edges are 

explicitly described as connections between dual points. A drawback of this approach is that 

planes passing near or through the designated origin cannot be dualized properly; they map 

to infinity or very large values. 
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3. Spherical Attribute Image 

3.1. A Novel Mapping Based On Deformable Surface 

The fundamental problem of the EGI family is that it depends on the Gauss mapping. For 

that reason, more than two parts on an object surface may be mapped on the same point of 

the sphere. More than two objects may have the same EGI. Further, a partial EGI from a part 

of an object is not same as a part of EGI from the whole object. Thus, under occlusion, we 

cannot perform the EGI matching. This problem is due to the fact that the Gauss mapping is 

not unique for non-convex objects. 

We have derived a novel method to make a one-to-one mapping between a non-convex 

object surface and a spherical surface [11,13]. The method uses a deformable surface. We 

first prepare a semi-regularly tessellated geodesic dome (a tessellated unit sphere). Then, we 

deform the geodesic dome onto an object surface as close as possible (data force) while 

maintaining the local regularity constraint (regularization force): to ensure that tessellations 

have a similar area and .the same topology as one another. The final representation is given 

as the equilibrium between the data force and the regularization force. By doing so, 1) the 

object surface is semi-uniformly tessellated, 2) each tessellation on the object surface has a 

counterpart on the undeformed geodesic dome (unit sphere); thus, we can establish a one-to- 

one mapping between the object surface and the unit sphere. The mapping is referred to as 

deformable surface mapping (DSP) (see Figure 7). 

At each tessellation on the object surface, we calculate invariants such as Gaussian curva- 

ture or surface albedo, and map them to the corresponding original tessellation of the geode- 

sic dome. We can observe a distribution of invariants on the unit sphere. Among the possible 
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invariants, Gaussian curvature is the most important. The distribution based on the Gaussian 

curvature is referred to as the Spherical Attribute Image (SAI). 

one-to-one correspondence 

Original tessellation Deformation Final tessellation 

Figure 7: Deformable surface mapping 

At each tessellation on the object surface, we calculate invariants such as Gaussian curva- 

ture or surface albedo, and map them to the corresponding original tessellation of the geode- 

sic dome. We can observe a distribution of invariants on the unit sphere. Among the possible 

invariants, Gaussian curvature is the most important. The distribution based on the Gaussian 

curvature is referred to as the Spherical Attribute Image (SAI). 

In the following section, we will briefly describe the SAI. First, we explain how to tessellate 

an arbitrary surface into a semi-regular mesh, and how to calculate the simplex angle (dis- 

cretized Gaussian curvature), a variation of curvature, at the nodes of the mesh, and how to 

map the mesh to a spherical image. Finally, we discuss how to handle partial views of 3-D 

objects. 

3.2. Semi-Regular Tessellation 

A natural discrete representation of a surface is a graph of points, or tessellation, such that 

each node is connected to each of its closest neighbor by an arc of the graph. It is desirable 
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for many algorithms to have a constant number of neighbors at each node. We use a class of 

tessellations such that each node has exactly three neighbors. Such a tessellation can be con- 

structed as the dual of a triangulation of the surface. 

Let us first consider tessellations of the unit sphere. A regular tessellation would be a tessel- 

lation covering a complete spherical surface such that the distance between vertices is con- 

stant and each node has exactly three neighbors. It is well known that only approximate 

global regularity can be achieved. Specifically, the approach that we use is to first build a tri- 

angulation by subdividing each triangular face of a 20-face icosahedron into N smaller trian- 

gles. The final tessellation is built by taking the dual of the A^ faces triangulation, yielding a 

tessellation with the same number of nodes. This tessellation of a sphere, a geodesic dome, 

is the starting point of our technique. Figure 8 shows an example of a 1620-face semi-regu- 

lar geodesic dome. 

^^./■....^_^^ ■ 

/xA'U, .r%,A::l;;::T:;T;:Tv-:T:;;;i;-^l4r*T^ ■  ■■Hv-w.;.>-ri;. ■..;-..:.i--^-^-.-,> .•.■i,-.....i..-. -.■>!■_.■ .,i-----y-- ■ |:-■ ..(->■-■ u-i^- ■ 

Figure 8: Semi-regular geodesic dome 

3.3. Regularity Constraint 

In order to obtain a mesh of an arbitrary surface, we deform a tessellated surface until it is a 
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good approximation of the object surface. We need to add another constraint in order to 

build meshes suitable for matching. Specifically, we need to make sure that the distribution 

of mesh nodes on the surface is invariant with respect to rotation, translation and scale. 

Let us consider a 2-D case. If all the edges of the mesh have the same length, the tessellation 

is regular. Namely, the length PPj should be same as the length PP2. This condition is same 

as that P's projection to the P1P2, Q is at the center G. 

We can extend this definition of the regularity to the 3D case. Let P be a node of the tessel- 

lation, Pj,, P^ be its three neighbors, G be the centroid of the three points, and Q be the pro- 

jection of P on the plane defined by P;, P2, and P3 (See Figure 9). The local regularity 

condition simply states that Q coincides with G. 

(a) 2D regularity (b) 3D regularity 

Figure 9: Regularity constraint 

3.4. Discrete Curvature Measure 

The next step in building a discrete surface representation is to define a measure of curva- 

ture that can be computed from a tessellation. Instead of estimating surface curvature by 

locally fitting a surface or by estimating first and second derivatives, we proposed a measure 

of curvature computed at every node from the relative positions of its three neighbors. We 

call this measure of curvature the simplex angle and we denote its value at node P by g(P). 

Although g(P) is not the curvature at P, it behaves as a qualitative measure of curvature 
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which is sufficient for matching purposes. Finally, g(P) is invariant with respect to rotation, 

translation, and scaling. 

3.5. Deformable Surface Mapping 

A regular mesh drawn on a closed surface can be mapped to a spherical mesh in a natural 

way. For a given number of nodes K, we can associate with each node a unique index which 

depends only on the topology of the mesh and which is independent of the shape of the 

underlying surface. This numbering of the nodes defines a natural mapping h between any 

mesh Mand a reference mesh 5 on the unit sphere with the same number of nodes: h(P) is 

the node of 5 with the same index as P. 

Given h, we can store at each node P of 5 the simplex angle of the corresponding node on 

the surface gQi(Py). The resulting structure is a spherical image, that is, a tessellation on the 

unit sphere, each node being associated with the simplex angle of a point on the original sur- 

face. We call this representation the Spherical Attribute Image (SAI). 

If the original mesh M satisfies the local regularity constraint, then the corresponding SAI 

has several invariance properties: 

1) For a given number of nodes, the SAI is invariant by translation and scaling of the origi- 

nal object. 

2) The SAI represents an object unambiguously up to a rotation. More precisely, if Mand M' 

are two tessellations of the same object with the same number of nodes, then the corre- 

sponding SAIs 5 and 5'are identical up to a rotation of the unit sphere. One consequence of 

this property is that two SAIs represent the same object if one is the rotated version of the 

other. It is this property which will allow us to match surfaces that differ by arbitrary rigid 
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transformations. 

3) A connected patch of the surface maps to a connected patch of the spherical image. It is 

this property that allows us to work with non-convex objects and to manipulate models of 

partial surface, neither of which are possible with conventional spherical representations. 

Figure 10 (a) and (b) show an intensity image and the corresponding set of points from the 

range image. In this example, we use the dual of the 9th subdivision of a 20-face icosahe- 

dron, (1620 faces). This initial mesh is deformed and reaches the stable state shown in Fig- 

ure 11(a). The corresponding SAI data is shown in Figure 11(b). In the SAI display, the 

distance from each vertex to the origin is proportional to the simplex angle. 

In general, parts of the surface may be occluded by other parts of the object in the range 

image. The surface fitting algorithm interpolates smoothly across regions of occluded data. 

In addition, nodes of the mesh are flagged as interpolated or non-interpolated depending on 

their distances from the closest data point. Specifically, a node is marked as "interpolated" if 

the closest data point is at a distance greater than a threshold. The matching procedure then 

uses the interpolation flags to determine which nodes should be included in the matching 

function. The same mechanism is used in order to deal with backfacing regions of the sur- 

face. Additional issues on matching partial surfaces are discussed below. 
TT-—r 

^''^'rv 

(a) (b) 

Figure 10: Input data: (a) Intensity image, (b) Range image 
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(a) 
Figure 11: (a) Deformable mesh, (b) SAI representation on the unit sphere 

3.6. Matching Surface Models 

We now address the matching problem: Given two SAIs, determine the rotation between 

them, and then find the rigid transformation between the two original sets of points. The rep- 

resentations of a single object with respect to two different viewing directions are related by 

a rotation of the underlying sphere. Therefore, the most straightforward approach is to com- 

pute a distance measure between two SAIs. Once the rotation yielding minimum distance is 

determined, the fiill 3-D transformation can be determined. 

In the following discussion, we will consider only the vertices of the SAIs that correspond to 

visible parts of the surface. Let 5 and 5'be the SAIs of two views. 5 and 5'are representa- 

tions of the same area of the object if there exists a rotation R such that g(P) = g (RF) for 

every point P of S. 

The problem now is to find this rotation using the discrete representation of 5 and S'. This is 

done by defining a distance D{S, S', R) between SAIs as the sum of squared differences 
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between the simplex angles at the nodes of one of the spheres and at the nodes of the rotated 

sphere. Formally, the distance is defined as:Z)(^, 5", i?) = ^ (^(P)-g(i?P))2 

The minimum of D corresponds to the best rotation that brings 5 and 5' in correspondence. 

Figure 12 shows the result of matching two views of a head. Figure 12(a) shows the inten- 

sity images of the two views of the object. Figure 12(b) shows the corresponding SAIs. Fig- 

ure 12(c) shows the distribution of £» as a function of two of the rotation angles, cp and 9. The 

graph exhibits a sharp minimum corresponding to the best rotation between the two spheri- 

cal maps. 

The rotation of the SAIs is not the same as the rotation of the original objects; it is the rota- 

tion of the spherical representations. An additional step is needed to compute the actual 

transformation between objects as described below. 

Figure 12 shows the graph of Z) as function of 9 and 6 obtained by sampling the space of all 

possible rotations, represented by three angles (0, cp, \|/). Although convenient, this approach 

is too expensive to be practical. 

An alternative matching algorithm is based on the observation that the only rotations for 

which D(S, S', R) should be evaluated are the ones that correspond to a valid list of corre- 

spondences {(Pj, P'j)} between the noes P, of 5 and the nodes P'j of 5'. Figure 13(a) illus- 

trates the correspondences between nodes: NodeP; of the first SAI is put in correspondence 

with node P'jj of 5' and its two neighbors, P2 and Pj, are put in correspondence with two 

neighbors of P',;, P',2 and P',^, respectively. This set of three correspondences defines a 

unique rotation of the spherical image. It also defines a unique assignment for the other 

nodes, that is, there is a unique node P'y corresponding to a node P, of S, given the initial 
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correspondences. Moreover, there is only a small number of such initial correspondences. 

^). ft 

=% 
■■ST'-i 

%'«, □ □ 
Figure 12: Matching two SAIs 

Based on this observation, we developed an SAI matching algorithm decomposed into two 

stages; a pre-processing phase and a run-time phase. During pre-processing, we generate the 

data structure shown in Figure 13(b). The data structure is a two dimensional array in which 

each row corresponds to a possible rotation of the SAI and in which column; of row / is the 

index of the node Py corresponding to node Pj and correspondence number /. At run-time, 

the distance is evaluated for each row of the array:/).(5', S\R) = ^ (si^j) - SiPfj)) ^ 
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P'H 

Pj 
(a) 

node number 

C3      !r! o      u 
■■B     -g 

1 j K 

u 

i^/y PiJ ^/^ 

(b) 

Figure 13: Efficient matching algorithm; (a) Valid correspondence 

The row that produces the minimum D, gives the best correspondence between nodes of the 

mesh, {{Pj, P'ij)}, which is used for computing the full transformation between the object 

meshes as described in the next section. 

This algorithm is guaranteed to find the global optimum of D and it does not require an ini- 

tial estimate of the transformation. It is efficient because all that is required at run time is to 

look up the correspondence table, to compute sum of square differences of corresponding 

nodes and to add them up 

3.7. Computing the Full Transformation 

The last step in matching objects is to derive the transformation between the actual objects, 

given the rotation between their SAIs (See Figure 14). The rotational part of the transforma- 

tion is denoted by R^, the translational part by T„. Given a SAI rotation R, we know the cor- 

responding node P' of each node P of S. Let M, resp. M', be the point on the view 
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corresponding to the node P of 5, resp. P'. A first estimate of the transformation is computed 

by minimizing the sum of the squared distances between the points M of the first view and 

the corresponding points RJSi'+T^ of the second view.The optimum transformation for E 

can be computed in a non-iterative manner by using standard quaternion-based techniques.. 

CS^: ^ n 
view 1 Regular Mesh SAI 

1^ 
view 2 

Figure 14: Computing the full transformation 

3.8. Matching Surface Models 

In order to compare SAIs computed from different views, we need to adjust the number of 

nodes because the relative sizes of the visible and hidden areas vary depending on the view- 

ing direction. As mentioned before, the nodes which are in regions of the object where no 

data points were presented are expHcitiy marked as "interpolated". As a result, the size of 

the visible and interpolated parts of the mesh can be easily identified. 

Let us consider the problem of merging two views, V, and ¥2- Let Sj and S2 be the number of 

nodes that would be visible from V, and Vj if we had a complete model of the object. Let the 
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visible areas of the object surface be^; and ^2 for ^; and V2, respectively. The ratio of the 

number of visible SAI nodes to the total number of SAI nodes, S^ is equal to the ratio of the 

visible area to the entire object area, A^ 

S~     T S~     A  ' 
0 0 0 0 

However, we do not know.4o since we have only partial views of the object, but we can esti- 

mate ^4; andy42 from each of the views. Eliminating S^ from these equations, we obtain S2 = 

SiAjAj. 

This equation enables us to modify the SAIs from different views so that the distribution of 

nodes in the visible area is consistent between views. More precisely, we compute the scale 

factor/l^M; from the estimated visible areas from each of the images, and move the nodes of 

the SAI from V2 so that the equation is satisfied. 

The key in this procedure is the connectivity conservation property of the SAI. Specifically, 

if a connected patch of the surface is visible, then its corresponding image on the SAI is also 

a connected patch on the sphere. This property allows us to bring the two connected patches 

into correspondence using a simple spherical scaling. This property is the fundamental dif- 

ference between the SAI and the spherical representations which cannot deal easily with 

partial views. 

Figure 16 shows the final result of computing the transformation between the two views. 

Figure 16 (a) shows the superimposition of the data points from the two range images before 

computing the transformation. Figure 16(b) shows the same combined data set using the 

transformation computed using the algorithm above. This display shows that the two views 

are registered correctly. 
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Visible area: Al 

Visible node: SI 

View 1 

visible regions 

interpolated regions 

occluded regions 

Visible area: A2 

Visible node: S2 

View 2 

Figure 15:Matching partial views 

f4i 

V 1 

-I 

Figure 16: Merging two views; (a) Overlaid views before registration; (b) Overlaid 
views after registration. 



page 26 

4. Conclusion 

In this paper, we argued that main issue in representing general objects is to be able to define 

an intrinsic coordinate system on a surface, onto which properties such as curvature may be 

mapped. A convenient way of addressing this problem is to define an intrinsic mapping 

between a closed surface and the unit sphere. 

Although we are still far from a completely satisfactory solution, we have made significant 

progress. Starting with the EGI, which can only handle convex objects under rotation, we 

have introduced the DEGI and the CEGI which can deal with translations and, to some 

extent, with non-convexity. 

Finally, the SAI relaxes many of the constraints of the EGI-like representations by preserv- 

ing the connectiviy of the surface, that is, a connected path on the surface maps to a con- 

nected path on the sphere. This property allows us to deal with non-convex objects and with 

general transformations. 

We are still a long way from a general solution, however First of all, the SAI is limited to 

objects with a genus 0 topology. Second, the algorithm used for extracting the underlying 

deformable surface does have limitations with respect to the variation in the object shape. 

Nevertheless, we believe that intrinsic coordinate maps are a fundamental tool for general 

object matching and we working toward improving the SAI to handle more general cases. 
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